Roll No. \square Total No. of Pages : 3
Total No. of Questions: 09

B.Tech. (Sem.-2)
ENGINEERING MATHEMATICS-II Subject Code : AM-102 (2005-2010 Batch)
Paper ID : [A0119]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

1. Write short notes on :
a) Define rank of a matrix. What could be the maximum value of a rank of a 3×4 matrix?
b) Derive the condition for the linear transformation $\mathrm{Y}=\mathrm{AX}$ to be orthogonal, where A is a square matrix.
c) What is necessary and sufficient condition for a differential equation $\mathrm{M} d x+\mathrm{N} d y=0$ to be exact ?
d) Find the particular integral of the differential equation $\left(D^{3}+4 D\right) y=\sin 2 x$.
e) Consider an electric circuit containing an inductance L and capacitance C. Let i be the current and q the charge in the condenser plate at any time t. Write down the differential equation of charge for this circuit. What is the nature of this differential equation ?
f) Show that the vector $3 y^{4} z^{2} \hat{i}+4 x^{3} z^{2} \hat{j}+3 x^{2} y^{2} \hat{k}$ is solenoidal.
g) State Green's theorem in plane.
h) Show that the vector field $\overrightarrow{\mathrm{F}}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ is irrotational.
i) Define the terms 'Exhaustive events' and 'Mutually exclusive events'.
j) Write a short note on 'objectives of sampling'.

SECTION-B

2. a) Reduce the following matrix to normal form and hence find its rank:

$$
A=\left[\begin{array}{rrrr}
8 & 1 & 3 & 6 \\
0 & 3 & 2 & 2 \\
-8 & -1 & -3 & 4
\end{array}\right]
$$

b) Test the following system of equations for consistency and solve.

$$
2 x-3 y+7 z=5 ; 3 x+y-3 z=13 ; 2 x+19 y-47 z=32
$$

3. Find complete solutions of the following differential equations:
a) $\left(x^{2} y^{2}+x y+1\right) y d x+\left(x^{2} y^{2}-x y+1\right) x d y=0$
b) $p^{2}+2 p y \cot x=y^{2}$
4. a) Find a complementary function and particular integral of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{e^{x}}
$$

b) Find complete solution of the differential equation :

$$
x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)
$$

5. An elastic string of natural length ' a ' is fixed at one end and a particle of mass ' m ' hangs freely from the other end. The modulus of elasticity is ' mg '. The particle is pulled down a further distance ' 1 ' below its equilibrium position and released from rest. Show that the motion of the particle is simple harmonic and find the periodicity.

SECTION-C

6. a) Find the directional derivative of $\varphi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of the vector $2 \hat{i}-\hat{j}-2 \hat{k}$.
b) If $\overrightarrow{\mathrm{F}}=\left(5 x y-6 x^{2}\right) \hat{i}+(2 y-4 x) \hat{j}$ evaluate $\int_{\mathrm{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{R}}$ along the curve C in the XY-plane, $y=x^{3}$ from the point $(1,1)$ to $(2,8)$.
7. a) Verify Green's theorem for $\int_{\mathrm{C}}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the boundary of the region bounded by $x=0, y=0$ and $x+y=1$.
b) Apply Stoke's theorem $\oint_{\mathrm{C}}(y z d x+z x d y+x y d z)$ where C is the curve $x^{2}+y^{2}=1, z=y^{2}$.
8. a) Show that the function defined as under is a density function
$f(x)= \begin{cases}e^{-x} & , x \geq 0 \\ 0 & , x<0\end{cases}$
Determine the probability that the variate having this density will fall in the interval $(1,2)$. Also find the cumulative probability function $F(2)$.
b) Fit a parabola $y=a+b x+c x^{2}$ to the following data :

$x:$	2	4	6	8	10
$y:$	3.07	12.85	31.47	57.38	91.29.

9. a) A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times. On the assumption of random throwing, do the data indicate an unbiased die?
b) The nine items of a sample have the following values: $45,47,50,52$, $48,47,49,53,51$. Does the mean of these differ significantly from the assumed mean of 47.5 ?
